Course Outline Electromagnetic Theory Physics 604

Meeting Times: 17:45-19:00, Tuesdays and Thursdays

Meeting Place: OCNPS 303

Text: J. D. Jackson, *Classical Electrodynamics*, 3rd Edition, John Wiley

Office Hours: 2:30-4:00 Thursdays OCNPS 213

Supplementary Texts: Landau and Lifshitz, *Classical Field Theory*, Greiner, *Classical Electrodynamics*, Flanders, *Differential Forms with Applications to the Physical Sciences*, Weintraub, *Differential Forms*

Grading: Homework Problems 20%; Mid-term Examination 30%; Final Examination 50%

Course Content

Introduction to Electromagnetism

Constitutive Relations

• Introduction to Electrostatics (Chapter 1)

Coulomb's Law

Gauss's Law

Poisson and Laplace Equations

Green's Theorem

Electrostatic Energy

• Boundary-Value Problems in Electrostatics: I (Chapter 2)

Method of Images

Green Function for the Sphere

Orthogonal Functions and Expansions

Separation of Variables; Laplace Equation in Rectangular Coordinates

Boundary-Value Problems in Electrostatics (Chapter 3)

Laplace Equation in Spherical Coordinates

Legendre Equation; Legendre Polynomials

Associated Legendre Functions and Spherical Harmonics

Addition Theorem

Laplace Equation in Cylindrical Coordinates; Bessel Functions

Multipoles, Electrostatics of Macroscopic Media, Dielectrics (Chapter 4)

Multipole Expansion

Multipole Expansion of the Energy of a Charge Distribution

Boundary-Value Problems with Dielectrics

Electric Polarizability

Electrostatic Energy in Dielectric Media

Magnetostatics, Faraday's law, Quasi-static Fields (Chapter 5)

Biot Savart Law

Vector Potential

Macroscopic Equations, Boundary Conditions on **B** and **H** Uniformly Magnetized Sphere Faraday's Law of Induction Energy in the Magnetic Field